

Energy Harvesting Node Algorithm for EnHANTs

Caroline E. Schiavo

Research performed at Columbia University’s Electrical Engineering

Wireless and Mobile Networking Lab

Author Note: This research was designed and guided by Jelena Marašević, a Ph.D.

student in the Columbia University Department of Electrical Engineering in the

laboratory of Professor Gil Zussman. This research was conducted in Professor

Gil Zussman’s Wireless and Mobile Networking Lab at the Columbia University

Schapiro Center (CEPSR).

Energy Harvesting Node Algorithm for EnHANTs
1

ABSTRACT

EnHants, Energy Harvesting Active Networked Tags will supersede the use of ultra-low

power networks, helping survivors of natural disasters and finding misplaced objects.

The energy harvesting is used for multiple nodes to form a network that transmits to

one main node or device [1, 4, 13, 14]. Each node has a set algorithm of iterations and

decisions, using an initial battery state, a battery capacity, number of time slots, and

harvested energy, battery states, and a fixed amount of energy per time slot [1]. This

existing algorithm determines how much energy one node should spend overtime,

while this research does not involve the entire network of nodes. This implementation

was to understand how the battery state evolves over time for a given initial state, the

amount of energy that is harvested over time, and the battery capacity, when the

device spends a constant input amount of energy x per time slot. Software Dev C++

assisted in developing the algorithm and certain libraries are imported to run the code.

After the algorithm is determined, it is compiled and run in many test trials, until an

effect can be seen by inputting different integer values [2]. It can be observed what is

the best energy harvested for each time slot and what are the values of b. One can

answer: Why is energy harvesting an advantage to other network strategies? Then,

energy harvesting will be an enabler and building block for the Internet of Things.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]:
Network Architecture and Design — Wireless Communication

General Terms: Algorithms, Measurements, Index

Keywords: Nodes, Energy Harvesting, EnHANTs, Routing, Battery states, Input and
output streams, ultra-low power, Internet of Things (IoT)
__

1
EnHANTs stands for Energy Harvesting Active Networked Tags, which is a project developed within Columbia

University’s Electrical Engineering: Wireless and Mobile Networking Lab.

1. INTRODUCTION

The creation of a node algorithm, along with energy harvesting and the expansion of

extremely low-power systems will allow for self-powered networked nodes that

outweigh the advantages of using low-power Bluetooth, Wi-Fi, and other suitable

networks [4, 13, 14]. In order for self-powered nodes to be established, there must be

a specific algorithm set for each node to transmit the signal using resource allocation,

which assigns the available resources to and from the node [1]. This allocation will

change depending on the type of energy available within each node. The algorithm

computes the battery levels for a given constant amount of energy spent per time slot.

Figure 1. An energy harvesting network with multiple nodes, an endpoint for the data at s, and
a battery with given variables [1].

Table 1. Nomenclature [1]

An energy harvesting network captures small amounts of energy that would be lost

otherwise, where the nodes sense the surroundings and forward the data. The data

from the static nodes end at its’ destination, s, as seen in Figure one over many T, time

slots. The battery of each node has a certain limit for B, the battery capacity, which is

related to b1, the initial battery level. The energy, *e, is harvested for time slots, while

its companion x inputted by the user is a ‘fixed amount’ of the energy that node spends

per time slot. For the purpose of the lab and this paper, there is one node present in

the harvesting network communicating with the tags. In regards to the nodes, they

have rechargeable batteries that can store small amount of energy. This stored energy

increases as the nodes harvest energy and when energy is spent, there is a decrease.

For many different energy sources, the amount of energy that is available for

harvesting is constantly changing over time, which

has been observed through measurements such

as traces of indoor and outdoor light [23].

1 node = 1 device

1 unit of data = 1 unit of energy

T Number of time slots

b1 Initial battery state

B Battery capacity

*e harvested energy per time slot

*b Battery states per time slot

X Fixed amount of energy per time slot, spend bt

I Integer for iteration of for loop

Figure 2. Motion energy harvesting process variability

regarding time and energy

Figure 3. Another simple energy harvesting

network where the green dots are the devices

trying to reach the endpoint, the laptop.

Figure 4. Demonstration and the enabling of EnHANTs as is related to
shifts, in layman’s terms the solar cells on the bookcase [24].

The paper is organized as follows. Section 2 provides step-by-step instructions on the

amount of energy held at each time slot, while Section 3 explains the results of this

method. Section 4 concludes the paper, by connecting the meaning of the results to

the bigger picture.

The goal of the paper is to address the problem associated with network overload by

creating an algorithm for each node to connect to one and other and a specific

destination. This problem can be dealt with by using Energy Harvesting Active

Networked Tags to assist The Internet of Things, the network of physical objects

through the internet, allowing for circumventing of novel applications and methods to

be replaced by a stronger infrastructure. For example, this condensed and advanced

communication will allow misplaced small items such as keys to be found, the constant

monitoring of devices, and swifter human rescue operations.

2. MATERIALS AND METHODS

The node algorithms required the use of the C++ or Java programming languages.

Java was originally used in developing the algorithm for the node. Later, after

discussion, the language of C++ was thought to be the best language for integration.

The coding was compiled and run in Dev C++2, a free IDE and compiler for C and C++

programming languages [2]. The requirements of the program required the addition of

three libraries cstdlib, iostream, and fstream that assisted the necessity of including the

input and output file stream classes. On July 21st, it was determined that cin can be

used to input and assign a value to x, the fixed amount of energy, after a command to

“Enter x” is provided by cout. The input file stream class’ variable, fin, allowed the

number of time slots, initial battery state, and the batter capacity to be inserted through

a text file named “input.txt”. Logical thinking was utilized to interpret that the first or

initial value of an object is always the index of zero, not the index of one in an array,

which allowed the initial battery state to be set equal to the first array. The harvested

energy has time slots represented by T, so e is set equal to the length of the array of T,

time slots, which is the same as b, the time slots for the battery states equal to T plus

one slots [1-3].

 __
2
C++ plus compiler made by Orwell and downloaded using SourceForge or Bloodshed.

Then, the variable i was declared to instantiate the iteration of the for loop and input

and print the harvested energy. By July 24th, another for loop iteration was created for

more output repeating until the end of the time slots is reached or other factors affect

the iteration. This time, the slots for the battery state had an index of i plus one. That

index of b equals x subtracted from index i of b and e would skip the decision

statement and repeat again. Associated, the if condition must be checked to see if

b[i+1] is not only greater than the battery capacity, but the probability that it could be

equal to the capacity. Later in this process, the output was found for all the values of b,

slots for the battery capacity by initializing as zero, incrementing by one, and having

the termination value be the number of T, time slots available or given for a practice

test run. All operations applied at the start of the algorithm need to be terminated so e

and b are deleted, while the ifstream’s variable fin is closed. The algorithm was

compiled and run without any error, while the user inputted different values of x for test

trials, representing the differences in the battery and energy. As another trial, the user

edited the notepad file named ‘input’ by switching the number of time slots and varying

the initial battery state and battery capacity. These test trials were conducted, for the

purpose of visualizing and interpreting the fluctuating data and results

Table 2. C++ Input and Output Library [3]

Cout<< Standard output stream, object

Cin>> Standard input stream, object

Fin>> Input file stream class variable name

Fout<< Output file stream class variable name

Ofstream fout Output file stream class

Ifstream fin Input file stream class

3. RESULTS

The data was collected after compiling and running the program in the command

prompt window. The command prompt which is located

inC:\javaprogs\Columbia\GSTEM\GSTEM.exe included the Enter x output. The user

tested multiple integer values for x, until satisfied with the x value of 3.5. The same

process occurred to allow for fifteen time slots. After testing multiple numbers for the

battery capacity, B, it was determined that increasing the battery capacity lead to the

change in energy harvesting for more time slots, while decreasing the battery closer to

the initial battery state left much energy per time slot at the same level as the battery

capacity. This can be demonstrated with twelve as the battery capacity; this lower

capacity shows only five amounts of energy that are harvested or changed (Figure 4),

while with the battery capacity of thirty-five, almost all the fifteen time slots have been

harvested with a different amount of energy than the battery capacity (Figure 5).

Regardless of the results, all fifteen original battery states or levels for each time slot

appeared after running the code (Figure 5 & 6).

Figure 5. Command Prompt, 12 [2]

Figure 6. Command Prompt, 35 [2]

4. DISCUSSION

The results conducted are accurate to previous results conducted by others and did not

refute or prove this hypothesis. This algorithm, in the future, can be implemented for

all the nodes. Then the algorithm can be used to look at the entire network and

interdependencies of data rates assigned to the nodes. This research is just one part of

the big puzzle of the energy harvesting network representing the potential benefits of

the EnHANTS for the Internet of Things.

ACKNOWLEDGEMENTS

Thank you to Associate Professor of Electrical Engineering, Gil Zussman and Ph.D.

student, Jelena Marašević from Columbia University. They have been instrumental in

my success with theoretical coding work, teaching me the C++ programming language

within the environment of Dev C++, and supportive in my adjustment to the anticipated

high rigor college work. Thank you to everyone else at the Wireless and Mobile

Networking Lab.

LITERATURE CITIED

[1] J. Marašević, C. Stein, and G. Zussman.
Max-min fair rate allocation and routing in
energy harvesting networks: Algorithmic
analysis. CoRR, abs/1406.3671, June 2014.
[2] Orwelldevcpp. Orwell Dev C++. Sourceforge,
2014.
[3] Input/Output Library. Cplusplus.com, 2000-
2014.
[4] Energy-Harvesting Active Networked Tags
(EnHANTs) Project, Columbia University,
http://enhants.ee.columbia.edu.
[5] S. Chen, P. Sinha, N. B. Shroff, C. Joo.
Finite-horizon energy allocation and routing
scheme in rechargeable sensor networks.
IEEE INFOCOM’11, 2011.
[6] B. Bacinoglu and E. Uysal-Biyikoglu.
Finite-horizon online transmission rate and
power adaptation on a communication
link with markovian energy harvesting. CoRR,
abs/1305.4558, 2013.
[7] D. Bertsekas and R. Gallager. Data
networks (2nd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1992.
[8] J.-H. Chang and L. Tassiulas. Maximum
lifetime routing in wireless sensor networks.
IEEE/ACM Trans. Netw., 12(4):609-619, 2004.
[9] A. Charny, D. D. Clark, and R. Jain.
Congestion control with explicit rate
indication. In Proc. IEEE ICC’95, 1995.
[10] S. Chen, P. Sinha, N. Shroff, and C. Joo.
A simple asymptotically optimal energy
allocation and routing scheme in rechargeable
sensor networks. In Proc. IEEE
INFOCOM’12, 2012.
[11] M. Gatzianas, L. Georgiadis, and L.
Tassiulas. Control of wireless networks with
rechargeable batteries. IEEE Trans.
Wireless Commun., 9(2):581-593, 2010.
[12] M. Gorlatova, A. Bernstein, and G.
Zussman. Performance evaluation of resource

allocation policies for energy harvesting
devices. In Proc. WiOpt’11, 2011.
[13] M. Gorlatova, P. Kinget, I. Kymissis,
D. Rubenstein, X. Wang, and G.
Zussman. Challenge: ultra-low-power
energy-harvesting active networked tags
(EnHANTs). In Proc. ACM MobiCom’09,
2009.
 [14] M. Gorlatova, R. Margolies, J. Sarik,
G. Stanje, J. Zhu, B. Vigraham, M.
Szczodrak, L. Carloni, P. Kinget, I.
Kymissis, and G. Zussman. Energy
harvesting active networked tags
(EnHANTs): Prototyping and
experimentation. Technical Report 2012
07-27, Columbia University, July 2012.
[15] M. Gorlatova, A. Wallwater, and G.
Zussman. Networking low-power energy
harvesting devices: Measurements and
algorithms. IEEE Trans. Mobile Comput.,
12(9):1853-1865, 2013.
[16] B. Gurakan, O. Ozel, J. Yang, and S.
Ulukus. Energy cooperation in energy
harvesting two-way communications. In
Proc. IEEE ICC’13, 2013.
[17] R.-S. Liu, K.-W. Fan, Z. Zheng, and
P. Sinha. Perpetual and fair data collection
for environmental energy harvesting
sensor networks. IEEE/ACM Trans. Netw.,
19(4):947-960, Aug. 2011.
[18] Z. Mao, C. Koksal, and N. Shroff.
Near optimal power and rate control of
multi-hop sensor networks with energy
replenishment: Basic limitations with finite
energy and data storage. IEEE Trans.
Autom. Control, 57(4):815-829, 2012.
[19] N. Megiddo. Optimal flows in
networks with multiple sources and sinks.
Mathematical Programming, 7(1):97-107,
1974.
[20] O. Ozel, K. Tutuncuoglu, J. Yang, S.
Ulukus, and A. Yener. Transmission with
energy harvesting nodes in fading wireless

channels: Optimal policies. IEEE J. Sel.
Areas Commun., 29(8):1732-1743, 2011.
[21] S. Sarkar and L. Tassiulas. Fair allocation
of discrete bandwidth layers in multicast
networks. In Proc. IEEE INFOCOM’00, 2000.
[22] R. Srivastava and C. Koksal. Basic
performance limits and tradeoffs in energy-
harvesting sensor nodes with finite data and
energy storage. IEEE/ACM Trans. Netw.,
21(4):1049-1062, 2013.
[23] M. Gorlatova, J. Sarik, G. Grebla, M. Cong, I.
Kymissis, and G. Zussman, “Movers and shakers:

Kinetic energy harvesting for the Internet of
things,” in Proc. ACM SIGMETRICS’14, 2014.
[24] M. Gorlatova, P. Kinget, I. Kymissis, D.
Rubenstein, X. Wang, and G. Zussman,
“Energy harvesting active networked tags
(EnHANTs) for ubiquitous object
networking,” IEEE Wireless Communications,
Special Issue on the Internet of Things: The
Next Big Thing in Communications, vol. 17, no.
6, pp. 18–25, Dec. 2010.

APPENDICES

Figure 7. Example of EnHants pieces

Figure 8. The energy harvesting network with four nodes

Code Examples

#include <cstdlib>

#include <iostream>

#include <fstream>

using namespace std;

int main(int argc, char *argv[])

{

 ifstream fin("input.txt");

 int i; // integer i used in for loop

 int T; // Number of time slots

 double b1; // Initial battery state

 double B; // Battery capacity

 double *e; // Harvested energy for slots 1,2,..., T

 double *b; // Battery states for slots 2, 3,..., T+1

 double x; // Fixed amount of energy spent per time slot

 // Before doing this part you need to enter T either from the standard input

 // or from a file

 //At this point, also input

 fin>>T;

 fin>>b1;

 e = new double [T];

 b = new double [T+1];

 b[0] = b1;

 cout<<"Enter x";

 cin>>x;

 fin>>B;

 for (i = 0; i < T; i++)

 {

 fin>>e[i]; //Inputing and printing harvested energy

 cout<<e[i]<<" ";

 }

 for (i = 0; i < T; i++)

 {

 b[i+1] = b[i] + e[i] - x;

 if (b [i + 1] > B)

 {

 b[i + 1] = B;

 }

 }

 for (i = 0; i < T; i++) //For loop that outputs all the values of b

 {

 cout << b[i] << endl;

 }

 delete [] e;

 delete [] b;

 fin.close();

 system("PAUSE");

 return EXIT_SUCCESS;

}

